

 [image: Kurento logo]

Table of Contents

	Kurento Tree Description
	Kurento Tree Server

	Kurento Tree Java Client

	Kurento Tree JavaScript Client

	Kurento Tree Demo applications

	Kurento Tree Source Code

	Kurento Tree Server Deployment
	Software Requirements

	Build from sources

	Kurento Tree JavaScript Client
	Using this client

	KurentoTree usage

	Kurento Tree Java Client
	Using this client

	KurentoTreeClient usage

	Reference documentation

	Kurento Tree Demos
	Demo using JavaScript client

	Demo using Java client

	Kurento Tree WebSocket Protocol
	WebSocket messages

	Index

 [image: Kurento logo]

Kurento Tree Description

Kurento Tree is a project that allows developers to build video broadcasting web
applications over internet. It is developed using WebRtc technology and Kurento
Media Server.

Kurento Tree project is formed by a server and two clients, a Java client and a
JavaScript client. There are also two demonstration applications are available
that makes use of this project to enable users to see the webcam of other user.

Kurento Tree Server

The Tree Server (kurento-tree-server) is a project designed to be deployed
and controlled by clients. We provide a Java client and a JavaScript client
specifically designed to browsers (it uses several browser-only APIs). In any
case, other clients can be implemented if follow the Json-Rpc over websocket
protocol. Tree Server uses a Kurento Media Server to provide WebRtc media
handling to clients. For this reason, a Kurento Media Server have to be
available and configured in Tree Server config file.

Kurento Tree Java Client

The Java Tree Client (kurento-tree-client) implements a Tree Client to be
used from Java applications. It is designed to be used in Java web applications
or Android applications. The client only contains an implementation of Json-Rpc
websocket protocol implementated by Tree server. It does not contain any
functionality to control video players or video capturing from webcams.

Kurento Tree JavaScript Client

The JavaScript Tree Client (kurento-tree-client-js) implements a Tree Client
to be used in Single Page Applications (SPA). It contains the main file
KurentoTree.js to connect to Tree Server. Besides the Json-Rpc websocket
protocol, it uses several libraries to control WebRtc and player HTML5 APIs in
the browsers. This allows to developer to focus in app functionality hidding
low level details.

Kurento Tree Demo applications

We provide two demos in this repository to show how to use the two provided
clients.

Demo using JavaScript client

The demo using Kurento Tree JavaScript client is located in the project
kurento-tree-demo-spa. It allows a user to broadcast his webcam and any
other user can see it.

From a technical point of view, this demo is Single Page Application (SPA)
implemented as a bunch of HTML, CSS and JS files. This files are served from a
SpringBoot web server, but can be served with any http server. The JavaScript
code uses Kurento Tree JavaScript client to communicate directly with Kurento
Tree Server.

Demo using Java client

The demo using Kurento Tree Java client is located in the project
kurento-tree-demo. It allows a user to broadcast his webcam and any other
user can see it (in the same way as the another demo).

From a technical point of view, this demo is a SpringBoot web application that
serves HTML, CSS and JS files. JavaScript logic communicates with SpringBoot
server by means of websocket protocol. The SpringBoot server handle websocket
messages and uses Java Kurento Tree Client to communicate with Kurento Tree
Server. That is, there is no direct communication between JavaScript code and
Kurento Tree Server. All communications is through SpringBoot server app.

Kurento Tree Source Code

Kurento Tree is hosted on github:

https://github.com/Kurento/kurento-tree

The git repository contains a Maven project with the following modules:

	kurento-tree [https://github.com/Kurento/kurento-tree] - Reactor project that contains all modules.

	kurento-tree/kurento-tree-server [https://github.com/Kurento/kurento-tree/tree/master/kurento-tree-server] - Server implementation of webcam
broadcasting service. It provides the a custom protocol based on Json-Rpc
over WebSockets for the communications between tree clients and the server.

	kurento-tree/kurento-tree-client [https://github.com/Kurento/kurento-tree/tree/master/kurento-tree-client] - Java library that uses WebSockets and
Json-Rpc to interact with the server. Can be used to implement the
client-side of a tree application in a Java Application Server or in an
Android device.

	kurento-tree/kurento-tree-client-js [https://github.com/Kurento/kurento-tree/tree/master/kurento-tree-client-js] - Javascript library that uses
WebSockets and Json-Rpc to interact with the server. It is also a wrapper for
several JS APIs to make easier to develop a broadcast application from a
browser.

	kurento-tree/kurento-tree-demo [https://github.com/Kurento/kurento-tree/tree/master/kurento-tree-demo] - Demonstration project of kurento-tree.
It is implemented with a Java web application that uses Java client to
communicate with tree server. The browser communicates with Java web
application using a custom websocket protocol.

	kurento-tree/kurento-tree-demo-spa [https://github.com/Kurento/kurento-tree/tree/master/kurento-tree-demo-spa] - Demonstration project of
kurento-tree. It is implemented as a full Single Page Application. This
project serves static assets with a SpringBoot server, but can be changed to
any other server. Tree server is controlled from browser with JavaScript tree
client.

	kurento-tree/kurento-tree-test [https://github.com/Kurento/kurento-tree/tree/master/kurento-tree-test] - Includes integration tests for the tree
server.

Kurento Tree Server Deployment

Currently, there are no binary releases of Kurento Tree Server. In order to
deploy a new Tree Server it is needed to build it from sources.

Software Requirements

In order to execute Kurento Tree Server it is necessary the following software:

	Ubuntu 14.04

	JDK 7 or 8

	Kurento Media Server or connection with at least a running instance (to
install follow the official
guide [http://www.kurento.org/docs/current/installation_guide.html])

Build from sources

To compile Kurento Tree Server from sources, there are more dependencies:

First of all, to build from sources it is necessary to download the sources from
git repository. For it, you have to install git:

sudo apt-get install git

Then, you have to install maven:

sudo apt-get install maven

Finally, you need Bower, npm and nodejs:

curl -sL https://deb.nodesource.com/setup | sudo bash -
sudo apt-get install -y nodejs
sudo npm install -g bower

When all dependencies are installed, you can get the code from the official
github repository and move into the code folder:

git clone https://github.com/Kurento/kurento-tree.git
cd kurento-tree

This will downloadd the latest code into your machine. That code is normally for
development, and depends on SNAPSHOT versions of artifacts that are not deployed
in Maven Central. You can either continue working with the nightly build (with caution,
as the development version might be unstable), or get the latest release of the project.
The steps that you have to follow for each one are different.

	Working with development versions: Please read the official project’s documentation [https://doc-kurento.readthedocs.org/en/stable/mastering/kurento_development.html] on how
to work with development versions, specially this [https://doc-kurento.readthedocs.org/en/stable/mastering/kurento_development.html#kurento-java-client] part about how to use our internal Archiva repo.

	Using a release version: This is the recommended approach, as release versions are more
stable. You’ll need to download the last release tag:

git checkout -b release 6.6.1-SNAPSHOT

Once you got the desired version, you just need to execute:

mvn install -DskipTests=true

And that will install all generated artifacts in your local Maven repository.

To execute Kurento Tree server from the recent build, execute the following
commands:

cd kurento-tree-server
mvn exec:java

Then a bunch of log messages will appear in the console. When the following
message appears in the console:

Started KurentoTreeServerApp in 4.058 seconds (JVM running for 8.017)

You can use Kurento Tree Server in port 8890.

Kurento Tree JavaScript Client

The developer of Kurento Tree applications can use this client when implementing
the front-end part of a broadcasting application with Kurento Tree. It is not
necessary to write any server-side logic.

Using this client

The library files needed to use this client are served by Kurento Tree Server in
the path:

	http://server-host:port/js/KurentoTree.js

There are also several third party libraries that need to be “imported” in the
HTML in order to user this Kurento Tree JavaScript client. This third party
libraries are also served by Kurento Tree Server in the paths:

	http://treeserver:port/bower_components/adapter.js/adapter.js

	http://treeserver:port/bower_components/eventEmitter/EventEmitter.js

	http://treeserver:port/js/kurento-utils.js

	http://treeserver:port/lib/sockjs.js

	http://treeserver:port/js/websocketwithreconnection.js

	http://treeserver:port/js/kurento-jsonrpc.js

	http://treeserver:port/js/jsonRpcClient.js

For example, all necessary dependencies to create a SPA Kurento Tree application
can be included in the HTML with the elements:

<script src="http://treeserver:port/bower_components/adapter.js/adapter.js"></script>
<script src="http://treeserver:port/bower_components/eventEmitter/EventEmitter.js"></script>
<script src="http://treeserver:port/js/kurento-utils.js"></script>
<script src="http://treeserver:port/lib/sockjs.js"></script>
<script src="http://treeserver:port/js/websocketwithreconnection.js"></script>
<script src="http://treeserver:port/js/kurento-jsonrpc.js"></script>
<script src="http://treeserver:port/js/jsonRpcClient.js"></script>
<script src="http://treeserver:port/js/KurentoTree.js"></script>

When these files are “included” in the HTML, the class KurentoTree is
available to subsequent JavaScript files included in the page. KurentoTree
class is the entry point of the Kurento Tree JavaScript Client.

KurentoTree usage

To connect to a Kurento Tree Server it is necessary to create an instance of
KurentoTree class indicating the URL of the server:

var tree = new KurentoTree('http://treeserver:port/kurento-tree');

In background, a websocket connection is made between browser and Kurento Tree
server.

To broadcast the user webcam it is necessary to execute a code similar to the
following:

var treeName = ...

var mediaOptions = {
 localVideo : video,
 mediaConstraints : {
 audio : true,
 video : {
 mandatory : {
 maxWidth : 640,
 maxFrameRate : 15,
 minFrameRate : 15
 }
 }
 }
};

tree.setTreeSource(treeName, mediaOptions);

Where localVideo refers to a HTML div element when local video being to be
broadcasted will be shown. If this option is not specified, no local video will
be shown in the page.

To include a player showing the video that it is broadcasting another user, it
is necessary to include a code similar to:

var treeName = ...

var mediaOptions = {
 remoteVideo : video
}

tree.addTreeSink(treeName, options);

Where remoteVideo refers to a HTML div element when remote video will be
shown.

To stop any transmission (from emitter or receiver), close() method can be
invoked:

tree.close();

Kurento Tree Java Client

The developer of Kurento Tree applications can use a Java client to control
Kurento Tree Server. This library gives more control to developer and allows to
include authentication and authorization to broadcast applications. To create a
broadcast applications with this Java client, it is necessary to implement a
frond-end logic in JavaScript that communicates with Java web applications
using websockets or another technology. Then, Java back-end will communicate
with Kurento Tree Server using this client.

Using this client

This client can be obtained as a maven dependency with the following coordinates:

<dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-tree-client</artifactId>
 <version>6.6.1-SNAPSHOT</version>
</dependency>

With this dependency, the developer can use the class
org.kurento.tree.client.KurentoTreeClient to control Kurento Tree Server.

KurentoTreeClient usage

To connect to a Kurento Tree Server it is necessary to create an instance of
KurentoTreeClient class indicating the URL of the server:

KurentoTreeClient tree = new KurentoTreeClient("http://treeserver:port/kurento-tree");

In background, a websocket connection is made between Java app and Kurento Tree
server.

To broadcast the user webcam it is necessary to execute a code similar to the
following:

String treeName = ... // Select a unique name for the broadcast

tree.createTree(treeName);

String sdpOffer = ... // Create sdp offer in browser

String sdpAnswer = tree.setTreeSource(treeName, sdpOffer);

// Send sdpAnswer to browser to complete media negotiation

In this code, sdpOffer have to be created in the browser and communicated to
Java web app using websocket or other technology. On the other hand,
sdpAnswer have to be send to browser.

String treeName = ... // The broadcast name

String sdpOffer = ... // Create sdp offer in browser

TreeEndpoint treeEndpoint = tree.addTreeSink(treeName, sdpOffer);

String viewerId = treeEndpoint.getId(); // Id of this viewer

String sdpAnswer = treeEndpoint.getSdp();

// Send sdpAnswer to browser to complete media negotiation

In same way as before, sdpOffer and sdpAnswer have to be interchanged
with JavaScript code in the browser to perform the media negotiation.

Kurento Tree support media negotiation with
Trickle ICE [https://webrtchacks.com/trickle-ice/] . In this sense, besides
SDP offer and answer interchange between browser and media server, it is
necessary to interchange Ice candidates between peers.

while (true) {

 // Retrieve new ice candidate from server
 IceCandidateInfo cand = tree.getServerCandidate();

 if (candidateInfo == null) {
 // No more ice candidates. Connection closed
 break;
 }

 // Tree to which belongs this candidate
 String treeName = cand.getTreeId();

 // Viewer to which belongs this candidate (if null, it is tree source)
 String viewerId = cand.getSinkId();

 // Ice candidate info
 String candidate = cand.getIceCandidate().getCandidate());
 int sdpMLineIndex = cand.getIceCandidate().getSdpMLineIndex());
 String sdpMid = cand.getIceCandidate().getSdpMid());

 // Send candidate info to browser to complete media negotiation

}

When a new ice candidate is received from browser it is necessary to process it
properly to achieve a successful media negotiation. This is done using the
following code:

String treeName = ...
String viewerId = ... // null if is tree source

String candidate = ...
int sdpMLineIndex = ...
String sdpMid = ...

tree.addIceCandidate(treeName, viewerId,
 new IceCandidate(candidate, sdpMid, sdpMLineIndex));

Reference documentation

You can take a look to the JavaDoc of this
client.

Kurento Tree Demos

We provide two demos in this repository to show how to use the two provided
clients.

Demo using JavaScript client

The demo using Kurento Tree JavaScript client is located in the project
kurento-tree-demo-spa. It allows a user to broadcast his webcam and any
other user can see it.

From a technical point of view, this demo is Single Page Application (SPA)
implemented as a bunch of HTML, CSS and JS files. This files are served from a
SpringBoot web server, but can be served with any http server. The JavaScript
code uses Kurento Tree JavaScript client to communicate directly with Kurento
Tree Server.

Demo using Java client

The demo using Kurento Tree Java client is located in the project
kurento-tree-demo. It allows a user to broadcast his webcam and any other
user can see it (in the same way as the another demo).

From a technical point of view, this demo is a SpringBoot web application that
serves HTML, CSS and JS files. JavaScript logic communicates with SpringBoot
server by means of websocket protocol. The SpringBoot server handle websocket
messages and uses Java Kurento Tree Client to communicate with Kurento Tree
Server. That is, there is no direct communication between JavaScript code and
Kurento Tree Server. All communications is through SpringBoot server app.

Installation

To start this demo application you first need to download the source code as
specified in Kurento Tree Server Deployment section.

First, you have to have a Kurento Media Server available. Please refer to
official Kurento documentation [http://doc-kurento.readthedocs.org/en/stable/installation_guide.html]
for information on how to get it.

Then, you have to start Kurento Tree Server using the following commands:

mvn install -DskipTests=true
cd kurento-tree-server
mvn exec:java

These commands will start Kurento Tree Server assuming that Kurento Media Server
is located in the same server. That is, Kurento Tree Server will try to connect
to a KMS in ws://localhost:8888/kurento. If you need Kurento Tree Server
connects to KMS with another URI, you have to exec it using the following
command:

mvn exec:java -Dkms.url=ws://<kms_host>:8888/kurento

These commands start kurento-tree-server in 8890 port. You can change
listening port using the parameter -Dserver.port=<port>.

The following step is start the Kurento Tree Demo app that uses Kurento Tree
Server. You have to open another terminal and locate in the root of the source
code repository, then you have to execute the following commands:

cd kurento-tree-demo
mvn install -DskipTests=true
mvn exec:java

These commands execute Kurento Tree Demo assuming that Kurento Tree Server is
located in localhost. The demo app tries to connect to
wss://localhost:8890/kurento-tree. If you want to connect to a Kurento Tree
Server located in another host, you have to start it using the following
command:

mvn exec:java -Dkts.ws.uri=wss://<kts_host>:8890/kurento-tree

Kurento Tree Demo app is started by default in port 8443. If you want to
change the port you can use the parameter -Dserver.port=<port>.

To use the demo application you have to open a browser pointing to
https://localhost:8443. The main use case of Kurento Tree Demo is broadcast
a webcam to other users. To test this scenario, open two browsers, first
configure one browser as presenter and then configure the other browser as
viewer and you should be the webcam from the presenter in the viewer.

Kurento Tree WebSocket Protocol

The Kurento Tree server exposes a SockJS websocket at
http://treeserver:port/kurento-tree, where the hostname and port depend on the
current setup.

The exchanged messages between server and clients are
JSON-RPC 2.0 [http://www.jsonrpc.org/specification] requests and responses.
The events are sent from the server to client as notifications (they don’t
require a response and they don’t include an identifier).

WebSocket messages

1 - Create tree

Request to create a new tree in Tree server. It is send by clients to server.

	Method: createTree

	Parameters:

	treeId - new tree Id (optional)

	Example request:

{
 "jsonrpc":"2.0",
 "id": 1,
 "method":"createTree",
 "params": {
 "treeId":"Channel 1"
 }
}

	Server response (result):

	value - new tree id

	sessionId - id of the WebSocket session between the client and the server

	Example response:

{
 "jsonrpc":"2.0",
 "id": 1,
 "result": {
 "value": "Channel 1",
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
}

2 - Set tree source

Request to configure the emitter (source) in a broadcast session (tree). It is
send by clients to server.

	Method: setTreeSource

	Parameters:

	treeId: tree id to configure the source

	offerSdp: Offer SDP created in the WebRtc peer that wants to
broadcast media to viewers

	Example request:

{
 "jsonrpc":"2.0",
 "id": 2,
 "method":"setTreeSource",
 "params": {
 "treeId":"Channel 1",
 "offerSdp":"v=0....apt=100\r\n"
 }
}

	Server response (result)

	sdpAnswer: SDP answer build by the the user’s server WebRTC endpoint

	sessionId: id of the WebSocket session

	Example response:

{
 "jsonrpc":"2.0",
 "id": 2,
 "result": {
 "answerSdp": "v=0....apt=100\r\n",
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
}

3 - Remove tree source

Request to remove the current emitter of a tree. It is send by clients to server.

	Method: remoteTreeSource

	Parameters:

	treeId: tree id to remove the source

	Example request:

{
 "jsonrpc":"2.0",
 "id": 3,
 "method":"remoteTreeSource",
 "params": {
 "treeId":"Channel 1"
 }
}

	Server response (result)

	sessionId: id of the WebSocket session

	Example response:

{
 "jsonrpc":"2.0",
 "id": 3,
 "result": {
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
}

4 - Add tree sink

Request to add a new viewer (sink) to the tree. It is send by clients to server.

	Method: addTreeSink

	Parameters:

	treeId: tree id to add a new viewer

	offerSdp: Offer SDP created in the WebRtc peer that wants to receive
media from tree

	Example request:

{
 "jsonrpc":"2.0",
 "id": 4,
 "method":"addTreeSink",
 "params": {
 "treeId":"Channel 1",
 "offerSdp":"v=0....apt=100\r\n"
 }
}

	Server response (result)

	sdpAnswer: SDP answer build by the the user’s server WebRTC endpoint

	sinkId: New sink id. This id will be used to remove the sink and to
exchange ice candidates.

	sessionId: id of the WebSocket session

	Example response:

{
 "jsonrpc":"2.0",
 "id": 4,
 "result": {
 "answerSdp": "v=0....apt=100\r\n",
 "sinkId": "dab37f17-be82-4cd3-af20-edea13548254",
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
 }

5 - Remove tree sink

Request to remove a previously connected sink (viewer). It is send by clients to
server.

	Method: removeTreeSink

	Parameters:

	treeId: tree id to remove the sink

	sinkId: sink id to be removed

	Example request:

{
 "jsonrpc":"2.0",
 "id": 5,
 "method":"removeTreeSink",
 "params": {
 "treeId":"Channel 1",
 "sinkId": "dab37f17-be82-4cd3-af20-edea13548254"
 }
 }

	Server response (result)

	sessionId: id of the WebSocket session

	Example response:

{
 "jsonrpc":"2.0",
 "id": 5,
 "result": {
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
}

6 - Ice candidate

Notification sent form server to client when a new Ice candidate is received
from Kurento Media Server. It is send by server to clients.

	Method: iceCandidate

	Parameters:

	treeId - Tree id to which belongs this candidate

	sinkId - Sink id to which belongs this candidate (if not present,
this candidate is referred to the tree source)

	sdpMid - Ice candidate sdpMid

	sdpMLineIndex - Ice candidate sdpMLineIndex

	candidate - Ice candidate string

	Example message:

{
 "jsonrpc":"2.0",
 "method":"iceCandidate",
 "params": {
 "treeId":"Channel 1",
 "sdpMid": "audio",
 "sdpMLineIndex": 0,
 "candidate": "candidate:2 2 UDP 2013266430 10.1.34.190 54211 typ host"
 }
}

7 - Add ice candidate

Request used to add a new ice candidate generated in the browser. It is send by
clients to server.

	Method: addIceCandidate

	Parameters:

	treeId: Tree id to which belongs this candidate

	sinkId: Sink id to which belongs this candidate (if not present,
this candidate is referred to the tree source)

	sdpMid: Ice candidate sdpMid

	sdpMLineIndex Ice candidate sdpMLineIndex

	candidate: Ice candidate string

	Example request:

{
 "jsonrpc":"2.0",
 "id": 7,
 "method":"addIceCandidate",
 "params": {
 "treeId": "Channel 1",
 "sinkId": "dab37f17-be82-4cd3-af20-edea13548254",
 "sdpMid":"video",
 "sdpMLineIndex": 1,
 "candidate": "candidate:952163293 2 port 55404 generation 0",
 }
}

	Server response (result)

	sessionId: id of the WebSocket session

	Example response:

{
 "jsonrpc":"2.0",
 "id": 7,
 "result": {
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
}

8 - Remove tree

Request used to remove a tree. It is send by clients to server.

	Method: removeTree

	Parameters:

	treeId: Tree id to be removed

	Example request:

{
 "jsonrpc":"2.0",
 "id": 8,
 "method":"removeTree",
 "params": {
 "treeId": "Channel 1"
 }
}

	Server response (result)

	sessionId: id of the WebSocket session

	Example response:

{
 "jsonrpc":"2.0",
 "id": 8,
 "result": {
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"
 }
}

Index

Kurento JavaDoc

Kurento Tree Client JavaDoc

	kurento-room-sdk

Table of Contents

	Kurento Tree Description
	Kurento Tree Server

	Kurento Tree Java Client

	Kurento Tree JavaScript Client

	Kurento Tree Demo applications

	Kurento Tree Source Code

	Kurento Tree Server Deployment
	Software Requirements

	Build from sources

	Kurento Tree JavaScript Client
	Using this client

	KurentoTree usage

	Kurento Tree Java Client
	Using this client

	KurentoTreeClient usage

	Reference documentation

	Kurento Tree Demos
	Demo using JavaScript client

	Demo using Java client

	Kurento Tree WebSocket Protocol
	WebSocket messages

	Kurento JavaDoc
	Kurento Tree Client JavaDoc

 _static/ajax-loader.gif

_images/kurento-rect-logo3.png
@ HKURENTO

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Kurento Tree Description

 		
 Kurento Tree Server

 		
 Kurento Tree Java Client

 		
 Kurento Tree JavaScript Client

 		
 Kurento Tree Demo applications

 		
 Demo using JavaScript client

 		
 Demo using Java client

 		
 Kurento Tree Source Code

 		
 Kurento Tree Server Deployment

 		
 Software Requirements

 		
 Build from sources

 		
 Kurento Tree JavaScript Client

 		
 Using this client

 		
 KurentoTree usage

 		
 Kurento Tree Java Client

 		
 Using this client

 		
 KurentoTreeClient usage

 		
 Reference documentation

 		
 Kurento Tree Demos

 		
 Demo using JavaScript client

 		
 Demo using Java client

 		
 Installation

 		
 Kurento Tree WebSocket Protocol

 		
 WebSocket messages

 		
 1 - Create tree

 		
 2 - Set tree source

 		
 3 - Remove tree source

 		
 4 - Add tree sink

 		
 5 - Remove tree sink

 		
 6 - Ice candidate

 		
 7 - Add ice candidate

 		
 8 - Remove tree

_static/plus.png

_static/kurento-white.png

_static/minus.png

_static/up-pressed.png

_static/up.png

